Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Brain Struct Funct ; 226(3): 759-785, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33544184

RESUMEN

The prethalamic eminence (PThE), a diencephalic caudal neighbor of the telencephalon and alar hypothalamus, is frequently described in mammals and birds as a transient embryonic structure, undetectable in the adult brain. Based on descriptive developmental analysis of Tbr1 gene brain expression in chick embryos, we previously reported that three migratory cellular streams exit the PThE rostralward, targeting multiple sites in the hypothalamus, subpallium and septocommissural area, where eminential cells form distinct nuclei or disperse populations. These conclusions needed experimental corroboration. In this work, we used the homotopic quail-chick chimeric grafting procedure at stages HH10/HH11 to demonstrate by fate-mapping the three predicted tangential migration streams. Some chimeric brains were processed for Tbr1 in situ hybridization, for correlation with our previous approach. Evidence supporting all three postulated migration streams is presented. The results suggested a slight heterochrony among the juxtapeduncular (first), the peripeduncular (next), and the eminentio-septal (last) streams, each of which followed differential routes. A possible effect of such heterochrony on the differential selection of medial to lateral habenular hodologic targets by the migrated neurons is discussed.


Asunto(s)
Hipotálamo/embriología , Neuronas/citología , Codorniz/embriología , Telencéfalo/metabolismo , Animales , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Embrión de Pollo , Pollos , Diencéfalo/embriología
2.
Development ; 144(18): 3278-3288, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28807896

RESUMEN

Classical descriptions of the hypothalamus divide it into three rostro-caudal domains but little is known about their embryonic origins. To investigate this, we performed targeted fate-mapping, molecular characterisation and cell cycle analyses in the embryonic chick. Presumptive hypothalamic cells derive from the rostral diencephalic ventral midline, lie above the prechordal mesendoderm and express Fgf10Fgf10+ progenitors undergo anisotropic growth: those displaced rostrally differentiate into anterior cells, then those displaced caudally differentiate into mammillary cells. A stable population of Fgf10+ progenitors is retained within the tuberal domain; a subset of these gives rise to the tuberal infundibulum - the precursor of the posterior pituitary. Pharmacological approaches reveal that Shh signalling promotes the growth and differentiation of anterior progenitors, and also orchestrates the development of the infundibulum and Rathke's pouch - the precursor of the anterior pituitary. Together, our studies identify a hypothalamic progenitor population defined by Fgf10 and highlight a role for Shh signalling in the integrated development of the hypothalamus and pituitary.


Asunto(s)
Tipificación del Cuerpo , Diferenciación Celular , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Hipotálamo/citología , Hipotálamo/embriología , Células Madre/citología , Animales , Anisotropía , Proliferación Celular , Embrión de Pollo , Pollos , Diencéfalo/embriología , Endodermo/embriología , Proteínas Hedgehog/metabolismo , Mesodermo/embriología , Modelos Biológicos , Sistemas Neurosecretores/metabolismo , Transducción de Señal , Somitos/embriología , Somitos/metabolismo , Células Madre/metabolismo , Regulación hacia Arriba
3.
J Neurosci ; 37(10): 2565-2579, 2017 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-28154153

RESUMEN

Diencephalic defects underlie an array of neurological diseases. Previous studies have suggested that retinoic acid (RA) signaling is involved in diencephalic development at late stages of embryonic development, but its roles and mechanisms of action during early neural development are still unclear. Here we demonstrate that mice lacking enzymatic activity of the acetyltransferase GCN5 ((Gcn5hat/hat )), which were previously characterized with respect to their exencephalic phenotype, exhibit significant diencephalic expansion, decreased diencephalic RA signaling, and increased diencephalic WNT and SHH signaling. Using a variety of molecular biology techniques in both cultured neuroepithelial cells treated with a GCN5 inhibitor and forebrain tissue from (Gcn5hat/hat ) embryos, we demonstrate that GCN5, RARα/γ, and the poorly characterized protein TACC1 form a complex in the nucleus that binds specific retinoic acid response elements in the absence of RA. Furthermore, RA triggers GCN5-mediated acetylation of TACC1, which results in dissociation of TACC1 from retinoic acid response elements and leads to transcriptional activation of RA target genes. Intriguingly, RA signaling defects caused by in vitro inhibition of GCN5 can be rescued through RA-dependent mechanisms that require RARß. Last, we demonstrate that the diencephalic expansion and transcriptional defects seen in (Gcn5hat/hat ) mutants can be rescued with gestational RA supplementation, supporting a direct link between GCN5, TACC1, and RA signaling in the developing diencephalon. Together, our studies identify a novel, nonhistone substrate for GCN5 whose modification regulates a previously undescribed, tissue-specific mechanism of RA signaling that is required to restrict diencephalic size during early forebrain development.SIGNIFICANCE STATEMENT Changes in diencephalic size and shape, as well as SNPs associated with retinoic acid (RA) signaling-associated genes, have been linked to neuropsychiatric disorders. However, the mechanisms that regulate diencephalic morphogenesis and the involvement of RA signaling in this process are poorly understood. Here we demonstrate a novel role of the acetyltransferase GCN5 in a previously undescribed mechanism of RA signaling in the developing forebrain that is required to maintain the appropriate size of the diencephalon. Together, our experiments identify a novel nonhistone substrate of GCN5, highlight an essential role for both GCN5 and RA signaling in early diencephalic development, and elucidate a novel molecular regulatory mechanism for RA signaling that is specific to the developing forebrain.


Asunto(s)
Diencéfalo/anatomía & histología , Diencéfalo/metabolismo , Transducción de Señal/fisiología , Tretinoina/metabolismo , Factores de Transcripción p300-CBP/metabolismo , Animales , Diencéfalo/embriología , Activación Enzimática , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Tamaño de los Órganos/fisiología
4.
Dev Biol ; 424(1): 62-76, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28219675

RESUMEN

The thalamus acts as a central integrator for processing and relaying sensory and motor information to and from the cerebral cortex, and the habenula plays pivotal roles in emotive decision making by modulating dopaminergic and serotonergic circuits. These neural compartments are derived from a common developmental progenitor domain, called prosomere 2, in the caudal forebrain. Thalamic and habenular neurons exhibit distinct molecular profile, neurochemical identity, and axonal circuitry. However, the mechanisms of how their progenitors in prosomere 2 give rise to these two populations of neurons and contribute to the forebrain circuitry remains unclear. In this study, we discovered a previously unrecognized role for Tcf7l2, a transcription factor known as the canonical Wnt nuclear effector and diabetes risk-conferring gene, in establishing neuronal identity and circuits of the caudal forebrain. Using genetic and chemical axon tracers, we showed that efferent axons of the thalamus, known as the thalamocortical axons (TCAs), failed to elongate normally and strayed from their normal course to inappropriate locations in the absence of Tcf7l2. Further experiments with thalamic explants revealed that the pathfinding defects of Tcf7l2-deficient TCAs were associated at least in part with downregulation of guidance receptors Robo1 and Robo2 expression. Moreover, the fasciculus retroflexus, the main habenular output tract, was missing in embryos lacking Tcf7l2. These axonal defects may result from dysregulation of Nrp2 guidance receptor. Strikingly, loss of Tcf7l2 caused a post-mitotic identity switch between thalamic and habenular neurons. Despite normal acquisition of progenitor identity in prosomere 2, Tcf7l2-deficient thalamic neurons adopted a molecular profile of a neighboring forebrain derivative, the habenula. Conversely, habenular neurons failed to maintain their normal post-mitotic neuronal identity and acquired a subset of thalamic neuronal features in the absence of Tcf7l2. Our findings suggest a unique role for Tcf7l2 in generating distinct neuronal phenotypes from homogeneous progenitor population, and provide a better understanding of the mechanism underlying neuronal specification, differentiation, and connectivity of the developing caudal forebrain.


Asunto(s)
Habénula/citología , Habénula/embriología , Red Nerviosa/metabolismo , Neuronas/metabolismo , Tálamo/citología , Tálamo/embriología , Proteína 2 Similar al Factor de Transcripción 7/metabolismo , Animales , Orientación del Axón , Axones/metabolismo , Biomarcadores/metabolismo , Tipificación del Cuerpo , Diencéfalo/embriología , Diencéfalo/metabolismo , Proteínas de Homeodominio/metabolismo , Ratones , Mitosis , Mutación/genética , Unión Proteica , Células Madre/metabolismo , Transcripción Genética
5.
Mol Neurobiol ; 54(6): 4414-4420, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-27349434

RESUMEN

The diencephalon is the primary relay network transmitting sensory information to the anterior forebrain. During development, distinct progenitor domains in the diencephalon give rise to the pretectum (p1), the thalamus and epithalamus (p2), and the prethalamus (p3), respectively. Shh plays a significant role in establishing the progenitor domains. However, the upstream events influencing the expression of Shh are largely unknown. Here, we show that Barhl2 homeobox gene is expressed in the p1 and p2 progenitor domains and the in zona limitans intrathalamica (ZLI) and regulates the acquisition of identity of progenitor cells in the developing diencephalon. Targeted deletion of Barhl2 results in the ablation of Shh expression in the dorsal portion of ZLI and causes thalamic p2 progenitors to take the fate of p1 progenitors and form pretectal neurons. Moreover, loss of Barhl2 leads to the absence of thalamocortical axon projections, the loss of habenular afferents and efferents, and a gross diminution of the pineal gland. Thus, by acting upstream of Shh signaling pathway, Barhl2 plays a crucial role in patterning the progenitor domains and establishing the positional identities of progenitor cells in the diencephalon.


Asunto(s)
Tipificación del Cuerpo , Diencéfalo/embriología , Diencéfalo/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Axones/metabolismo , Biomarcadores/metabolismo , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , Tálamo/embriología , Tálamo/metabolismo
6.
Development ; 139(20): 3795-805, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22991444

RESUMEN

Diverse mechanisms regulate development of GABAergic neurons in different regions of the central nervous system. We have addressed the roles of a proneural gene, Ascl1, and a postmitotic selector gene, Gata2, in the differentiation of GABAergic neuron subpopulations in three diencephalic prosomeres: prethalamus (P3), thalamus (P2) and pretectum (P1). Although the different proliferative progenitor populations of GABAergic neurons commonly express Ascl1, they have distinct requirements for it in promotion of cell-cycle exit and GABAergic neuron identity. Subsequently, Gata2 is activated as postmitotic GABAergic precursors are born. In P1, Gata2 regulates the neurotransmitter identity by promoting GABAergic and inhibiting glutamatergic neuron differentiation. Interestingly, Gata2 defines instead the subtype of GABAergic neurons in the rostral thalamus (pTh-R), which is a subpopulation of P2. Without Gata2, the GABAergic precursors born in the pTh-R fail to activate subtype-specific markers, but start to express genes typical of GABAergic precursors in the neighbouring P3 domain. Thus, our results demonstrate diverse mechanisms regulating differentiation of GABAergic neuron subpopulations and suggest a role for Gata2 as a selector gene of both GABAergic neuron neurotransmitter and prosomere subtype identities in the developing diencephalon. Our results demonstrate for the first time that neuronal identities between distinct prosomeres can still be transformed in postmitotic neuronal precursors.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diencéfalo/embriología , Neuronas GABAérgicas/metabolismo , Factor de Transcripción GATA2/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Encéfalo/embriología , Diferenciación Celular , Diencéfalo/citología , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA3/biosíntesis , Factor de Transcripción GATA3/genética , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Transgénicos , Neurogénesis , Tálamo/citología , Tálamo/embriología , Activación Transcripcional
7.
Development ; 138(3): 531-41, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21205797

RESUMEN

In caudal regions of the diencephalon, sonic hedgehog (Shh) is expressed in the ventral midline of prosomeres 1-3 (p1-p3), which underlie the pretectum, thalamus and prethalamus, respectively. Shh is also expressed in the zona limitans intrathalamica (zli), a dorsally projecting spike that forms at the p2-p3 boundary. The presence of two Shh signaling centers in the thalamus has made it difficult to determine the specific roles of either one in regional patterning and neuronal fate specification. To investigate the requirement of Shh from a focal source of expression in the ventral midline of the diencephalon, we used a newly generated mouse line carrying a targeted deletion of the 525 bp intronic sequence mediating Shh brain enhancer-1 (SBE1) activity. In SBE1 mutant mice, Shh transcription was initiated but not maintained in the ventral midline of the rostral midbrain and caudal diencephalon, yet expression in the zli was unaffected. In the absence of ventral midline Shh, rostral thalamic progenitors (pTH-R) adopted the molecular profile of a more caudal thalamic subtype (pTH-C). Surprisingly, despite their early mis-specification, neurons derived from the pTH-R domain continued to migrate to their proper thalamic nucleus, extended axons along their normal trajectory and expressed some, but not all, of their terminal differentiation markers. Our results, and those of others, suggest a model whereby Shh signaling from distinct spatial and temporal domains in the diencephalon exhibits unique and overlapping functions in the development of discrete classes of thalamic interneurons.


Asunto(s)
Proteínas Hedgehog/metabolismo , Interneuronas/citología , Interneuronas/metabolismo , Tálamo/citología , Tálamo/metabolismo , Animales , Diencéfalo/citología , Diencéfalo/embriología , Diencéfalo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Mutantes , Tálamo/embriología
8.
Nat Neurosci ; 13(6): 767-75, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20436479

RESUMEN

The hypothalamus is a central regulator of many behaviors that are essential for survival, such as temperature regulation, food intake and circadian rhythms. However, the molecular pathways that mediate hypothalamic development are largely unknown. To identify genes expressed in developing mouse hypothalamus, we performed microarray analysis at 12 different developmental time points. We then conducted developmental in situ hybridization for 1,045 genes that were dynamically expressed over the course of hypothalamic neurogenesis. We identified markers that stably labeled each major hypothalamic nucleus over the entire course of neurogenesis and constructed a detailed molecular atlas of the developing hypothalamus. As a proof of concept of the utility of these data, we used these markers to analyze the phenotype of mice in which Sonic Hedgehog (Shh) was selectively deleted from hypothalamic neuroepithelium and found that Shh is essential for anterior hypothalamic patterning. Our results serve as a resource for functional investigations of hypothalamic development, connectivity, physiology and dysfunction.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Genoma , Hipotálamo/crecimiento & desarrollo , Hipotálamo/metabolismo , Neurogénesis/genética , Animales , Atlas como Asunto , Diencéfalo/embriología , Diencéfalo/crecimiento & desarrollo , Diencéfalo/metabolismo , Femenino , Perfilación de la Expresión Génica , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Hipotálamo/embriología , Hibridación in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Neuroepiteliales/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Fenotipo , Reproducibilidad de los Resultados , Caracteres Sexuales , Especificidad de la Especie , Telencéfalo/embriología , Telencéfalo/crecimiento & desarrollo , Telencéfalo/metabolismo
10.
Neural Dev ; 4: 35, 2009 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-19732418

RESUMEN

BACKGROUND: Wnt signalling regulates multiple aspects of brain development in vertebrate embryos. A large number of Wnts are expressed in the embryonic forebrain; however, it is poorly understood which specific Wnt performs which function and how they interact. Wnts are able to activate different intracellular pathways, but which of these pathways become activated in different brain subdivisions also remains enigmatic. RESULTS: We have compiled the first comprehensive spatiotemporal atlas of Wnt pathway gene expression at critical stages of forebrain regionalisation in the chick embryo and found that most of these genes are expressed in strikingly dynamic and complex patterns. Several expression domains do not respect proposed compartment boundaries in the developing forebrain, suggesting that areal identities are more dynamic than previously thought. Using an in ovo electroporation approach, we show that Wnt4 expression in the thalamus is negatively regulated by Sonic hedgehog (Shh) signalling from the zona limitans intrathalamica (ZLI), a known organising centre of forebrain development. CONCLUSION: The forebrain is exposed to a multitude of Wnts and Wnt inhibitors that are expressed in a highly dynamic and complex fashion, precluding simple correlative conclusions about their respective functions or signalling mechanisms. In various biological systems, Wnts are antagonised by Shh signalling. By demonstrating that Wnt4 expression in the thalamus is repressed by Shh from the ZLI we reveal an additional level of interaction between these two pathways and provide an example for the cross-regulation between patterning centres during forebrain regionalisation.


Asunto(s)
Proteínas Aviares/metabolismo , Regulación del Desarrollo de la Expresión Génica , Prosencéfalo/embriología , Prosencéfalo/metabolismo , Proteínas Wnt/metabolismo , Animales , Proteínas Aviares/genética , Embrión de Pollo , Diencéfalo/embriología , Diencéfalo/metabolismo , Electroporación , Espacio Extracelular/metabolismo , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Hedgehog/metabolismo , Hibridación in Situ , Espacio Intracelular/metabolismo , Transducción de Señal , Tálamo/embriología , Tálamo/metabolismo , Factores de Tiempo , Proteínas Wnt/genética
11.
Semin Cell Dev Biol ; 20(6): 719-25, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19596327

RESUMEN

Correct patterning of the developing brain is crucial importance for accurate wiring and function. Although the adult brain contains many complex structures, it begins with a simple structure-the neural tube. As it develops, the neural tube is divided into several regions, including the telencephalon, diencephalon, midbrain, and hindbrain. In each of these regions, signaling molecules are secreted from discrete zones, which establish positional information and regulate regional growth. There are many mechanistic questions that remain to be resolved about the action of these growth and differentiation factors. The cellular factors mediating patterning in response to these factors are largely unknown. Furthermore, identical differentiation factors are expressed in different regions of the brain and yet control significantly different patterning mechanisms, and the factors that control region-specific responses to these factors are mostly obscure. Furthermore, differentiation factors also show dramatically different expression patterns in different vertebrate species that may underlie changes in brain structure, but the mechanisms by which these changes in gene expression occur poorly understood. To address these issues, we discuss the role of Fgf8, which controls anterior/posterior patterning in different regions of the developing brain. We also discuss how modifications of Fgf8 expression in the diencephalon controlled by retrotransposons can change the shape and function of the brain in various species.


Asunto(s)
Tipificación del Cuerpo , Diencéfalo/embriología , Factor 8 de Crecimiento de Fibroblastos/fisiología , Telencéfalo/embriología , Animales , Tipificación del Cuerpo/genética , Diferenciación Celular/fisiología , Diencéfalo/citología , Factor 8 de Crecimiento de Fibroblastos/genética , Humanos , Mesencéfalo/citología , Mesencéfalo/embriología , Ratones , Rombencéfalo/citología , Rombencéfalo/embriología , Transducción de Señal/fisiología , Telencéfalo/citología , Tálamo/citología , Tálamo/embriología , Factores de Transcripción/metabolismo
12.
J Toxicol Sci ; 34(3): 315-25, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19483385

RESUMEN

Methylmercury (MeHg) is an environmental pollutant known to cause neurobehavioral defects and is especially toxic to the developing brain. With recent studies showing that fetal exposure to low-dose MeHg causes developmental abnormalities, it is therefore important to find ways to combat its effects as well as to clarify the mechanism(s) underlying MeHg toxicity. In the present study, the effects of MeHg on cultured neural progenitor cells (NPC) derived from mouse embryonic brain were investigated. We first confirmed the vulnerability of embryonic NPC to MeHg toxicity, NPC from the telencephalon were more sensitive to MeHg compared to those from the diencephalon. Buthionine sulfoximine (BSO) which is known to inhibit glutathione synthesis accelerated MeHg toxicity. Furthermore, antioxidants such as N-acetyl cysteine and alpha-tocopherol dramatically rescued the NPC from MeHg's toxic effects. Interestingly, a 12 hr delay in the addition of either antioxidant was still able to prevent the cells from undergoing cell death. Although it is now difficult to avoid MeHg exposure from our environment and contaminated foods, taking anti-oxidants from foods or supplements may prevent or diminish the toxicological effects of MeHg.


Asunto(s)
Antioxidantes/farmacología , Contaminantes Ambientales/toxicidad , Compuestos de Metilmercurio/toxicidad , Neuronas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Células Madre/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Butionina Sulfoximina/farmacología , Recuento de Células , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Diencéfalo/efectos de los fármacos , Diencéfalo/embriología , Diencéfalo/patología , Interacciones Farmacológicas , Glutatión/antagonistas & inhibidores , Glutatión/biosíntesis , Ratones , Ratones Endogámicos ICR , Neuronas/metabolismo , Neuronas/patología , Células Madre/metabolismo , Células Madre/patología , Telencéfalo/efectos de los fármacos , Telencéfalo/embriología , Telencéfalo/patología
13.
Development ; 136(8): 1317-26, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19279136

RESUMEN

Relatively little is known about the development of the thalamus, especially its differentiation into distinct nuclei. We demonstrate here that Gbx2-expressing cells in mouse diencephalon contribute to the entire thalamic nuclear complex. However, the neuronal precursors for different thalamic nuclei display temporally distinct Gbx2 expression patterns. Gbx2-expressing cells and their descendents form sharp lineage-restriction boundaries delineating the thalamus from the pretectum, epithalamus and prethalamus, revealing multiple compartmental boundaries within the mouse diencephalon. Without Gbx2, cells originating from the thalamus abnormally contribute to the epithalamus and pretectum. This abnormality does not result from an overt defect in patterning or cell-fate specification in Gbx2 mutants. Chimeric and genetic mosaic analysis demonstrate that Gbx2 plays a cell-nonautonomous role in controlling segregation of postmitotic thalamic neurons from the neighboring brain structures that do not express Gbx2. We propose that, within the developing thalamus, the dynamic and differential expression of Gbx2 may be involved in the specific segregation of thalamic neurons, leading to partition of the thalamus into different nuclei.


Asunto(s)
Linaje de la Célula , Proteínas de Homeodominio/metabolismo , Tálamo/citología , Tálamo/metabolismo , Animales , Tipificación del Cuerpo , Diencéfalo/citología , Diencéfalo/embriología , Diencéfalo/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros/genética , Proteínas de Homeodominio/genética , Masculino , Ratones , Tálamo/embriología
14.
Artículo en Inglés | MEDLINE | ID: mdl-19294673

RESUMEN

BACKGROUND: Recent data have demonstrated that treatment with sodium benzoate (SB) leads to significant developmental defects in motor neuron axons and neuromuscular junctions in zebrafish larvae, thereby implying that SB can be neurotoxic. This study examined whether SB affects the development of dopaminergic neurons in the zebrafish brain. METHODS: Zebrafish embryos were exposed to different concentrations of SB for various durations, during which the survival rates were recorded, the expression of tyrosine hydroxylase (TH) and dopamine transporter (DAT) in the neurons in the ventral diencephalon were detected by in situ hybridization and immunofluorescence, and the locomotor activity of larval zebrafish was measured. RESULTS: The survival rates were significantly decreased with the increase of duration and dose of SB-treatment. Compared to untreated clutch mates (untreated controls), treatment with SB significantly downregulated expression of TH and DAT in neurons in the ventral diencephalon of 3-day post-fertilization (dpf) zebrafish embryos in a dose-dependent manner. Furthermore, there was a marked decrease in locomotor activity in zebrafish larvae at 6dpf in response to SB treatment. CONCLUSIONS: The results suggest that SB exposure can cause significantly decreased survival rates of zebrafish embryos in a time- and dose-dependent manner and downregulated expression of TH and DAT in dopaminergic neurons in the zebrafish ventral diencephalon, which results in decreased locomotor activity of zebrafish larvae. This study may provide some important information for further elucidating the mechanism underlying SB-induced developmental neurotoxicity.


Asunto(s)
Diencéfalo/efectos de los fármacos , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/biosíntesis , Conservantes de Alimentos/toxicidad , Neuronas/efectos de los fármacos , Benzoato de Sodio/toxicidad , Tirosina 3-Monooxigenasa/biosíntesis , Proteínas de Pez Cebra/biosíntesis , Pez Cebra/embriología , Animales , Secuencia de Bases , ADN Complementario/genética , Diencéfalo/embriología , Diencéfalo/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Inducción Enzimática/efectos de los fármacos , Hibridación in Situ , Larva/efectos de los fármacos , Microscopía Fluorescente , Datos de Secuencia Molecular , Neuronas/metabolismo , Distribución Aleatoria , Natación , Tirosina 3-Monooxigenasa/genética , Proteínas de Pez Cebra/genética
15.
J Neurosci ; 29(8): 2453-66, 2009 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-19244520

RESUMEN

The specification of the intricate neuronal assemblies that characterize the forebrain is not well understood. The ventral spinal cord is specified through a concentration gradient of Sonic hedgehog (Shh) protein secreted by the notochord. Shh is expressed also in the forebrain neuroepithelium (neural Shh) and the underlying notochord and prechordal plate. Neural Shh is essential for the development of the prethalamus (ventral thalamus), but its effects on the thalamus (dorsal thalamus) are still unclear. We hypothesized that neural Shh would act on a previously regionalized dorsal diencephalic region to promote the emergence of specific thalamic nuclear and histological traits. To find out, we generated a conditional mouse mutant line specifically lacking Shh expression in the diencephalic neuroepithelium. We show that the transcription factor Gbx2, required for thalamic development downstream Shh, is expressed in our mutant in a restricted thalamic region and is necessary and sufficient for the differentiation of the medial and intralaminar thalamic nuclei. In the rest of the thalamus, neural Shh is required to promote neuronal aggregation into nuclei as well as axonal extension. In this way, the individual thalamic nuclei show differential dependence on Shh, Gbx2, or both for their differentiation. Additionally, Gbx2 is required for the survival of thalamic neurons.


Asunto(s)
Diferenciación Celular/fisiología , Proteínas Hedgehog/fisiología , Neuronas/fisiología , Tálamo/citología , Análisis de Varianza , Animales , Apoptosis/genética , Bromodesoxiuridina/metabolismo , Diferenciación Celular/genética , Proliferación Celular , Diencéfalo/embriología , Diencéfalo/metabolismo , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Hedgehog/deficiencia , Etiquetado Corte-Fin in Situ , Ratones , Ratones Transgénicos , Mutación/genética , Proteínas Nucleares/metabolismo , Proteínas del Grupo Polycomb , Proteínas/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Tálamo/embriología
16.
Eur J Neurosci ; 28(10): 1941-55, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19046377

RESUMEN

The hypothalamus is a brain region with vital functions, and alterations in its development can cause human disease. However, we still do not have a complete description of how this complex structure is put together during embryonic and early postnatal stages. Radially oriented, outside-in migration of cells is prevalent in the developing hypothalamus. In spite of this, cell contingents from outside the hypothalamus as well as tangential hypothalamic migrations also have an important role. Here we study migrations in the hypothalamic primordium by genetically labeling the Foxb1 diencephalic lineage. Foxb1 is a transcription factor gene expressed in the neuroepithelium of the developing neural tube with a rostral expression boundary between caudal and rostral diencephalon, and therefore appropriate for marking migrations from caudal levels into the hypothalamus. We have found a large, longitudinally oriented migration stream apparently originating in the thalamic region and following an axonal bundle to end in the anterior portion of the lateral hypothalamic area. Additionally, we have mapped a specific expansion of the neuroepithelium into the rostral diencephalon. The expanded neuroepithelium generates abundant neurons for the medial hypothalamus at the tuberal level. Finally, we have uncovered novel diencephalon-to-telencephalon migrations into septum, piriform cortex and amygdala.


Asunto(s)
Linaje de la Célula/genética , Movimiento Celular/genética , Factores de Transcripción Forkhead/genética , Hipotálamo/embriología , Células Madre/metabolismo , Telencéfalo/embriología , Animales , Mapeo Encefálico/métodos , Diencéfalo/embriología , Marcadores Genéticos/genética , Área Hipotalámica Lateral/embriología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Biología Molecular/métodos , Vías Nerviosas/embriología , Tubo Neural/embriología , Células Madre/citología
17.
Development ; 135(3): 441-50, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18094027

RESUMEN

The homeobox gene Six3 represses Wnt1 transcription. It is also required in the anterior neural plate for the development of the mammalian rostral forebrain. We have now determined that at the 15- to 17-somite stage, the prospective diencephalon is the most-anterior structure in the Six3-null brain, and Wnt1 expression is anteriorly expanded. Consequently, the brain caudalizes, and at the 22- to 24-somite stage, the prospective thalamic territory is the most-anterior structure. At around E11.0, the pretectum replaces this structure. Analysis of Six3;Wnt1 double-null mice revealed that Six3-mediated repression of Wnt1 is necessary for the formation of the rostral diencephalon and that Six3 activity is required for the formation of the telencephalon. These results provide insight into the mechanisms that establish anteroposterior identity in the developing mammalian brain.


Asunto(s)
Tipificación del Cuerpo , Diencéfalo/embriología , Proteínas del Tejido Nervioso/deficiencia , Animales , Diencéfalo/metabolismo , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Represoras/metabolismo , Somitos/embriología , Somitos/metabolismo , Telencéfalo/embriología , Telencéfalo/metabolismo , Tálamo/embriología , Tálamo/metabolismo , Proteínas Wnt/metabolismo , Proteína Homeobox SIX3
18.
Neural Dev ; 2: 25, 2007 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-17999760

RESUMEN

BACKGROUND: The developing vertebrate brain is patterned first by global signalling gradients that define crude anteroposterior and dorsoventral coordinates, and subsequently by local signalling centres (organisers) that refine cell fate assignment within pre-patterned regions. The interface between the prethalamus and the thalamus, the zona limitans intrathalamica (ZLI), is one such local signalling centre that is essential for the establishment of these major diencephalic subdivisions by secreting the signalling factor Sonic hedgehog. Various models for ZLI formation have been proposed, but a thorough understanding of how this important local organiser is established is lacking. RESULTS: Here, we describe tissue explant experiments in chick embryos aimed at characterising the roles of different forebrain areas in ZLI formation. We found that: the ZLI becomes specified unexpectedly early; flanking regions are required for its characteristic morphogenesis; ZLI induction can occur independently from ventral tissues; interaction between any prechordal and epichordal neuroepithelial tissue anterior to the midbrain-hindbrain boundary is able to generate a ZLI; and signals from the dorsal diencephalon antagonise ZLI formation. We further show that a localised source of retinoic acid in the dorsal diencephalon is a likely candidate to mediate this inhibitory signal. CONCLUSION: Our results are consistent with a model where planar, rather than vertical, signals position the ZLI at early stages of neural development and they implicate retinoic acid as a novel molecular cue that determines its dorsoventral extent.


Asunto(s)
Tipificación del Cuerpo/fisiología , Diencéfalo/embriología , Diencéfalo/metabolismo , Neuronas/metabolismo , Transducción de Señal/fisiología , Tretinoina/metabolismo , Animales , Trasplante de Tejido Encefálico/métodos , Embrión de Pollo , Coturnix , Diencéfalo/citología , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Inhibidores de Crecimiento/metabolismo , Proteínas Hedgehog/metabolismo , Mesencéfalo/citología , Mesencéfalo/embriología , Mesencéfalo/metabolismo , Tubo Neural/citología , Tubo Neural/embriología , Tubo Neural/metabolismo , Neuronas/citología , Técnicas de Cultivo de Órganos , Rombencéfalo/citología , Rombencéfalo/embriología , Rombencéfalo/metabolismo , Células Madre/citología , Células Madre/metabolismo , Tálamo/citología , Tálamo/embriología , Tálamo/metabolismo , Quimera por Trasplante
19.
PLoS Biol ; 5(4): e69, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17341136

RESUMEN

The vertebrate neural plate contains distinct domains of gene expression, prefiguring the future brain areas. In this study, we draw an extended expression map of the rostral neural plate that reveals discrete domains inside the presumptive posterior forebrain. We show, by fate mapping, that these well-defined cell populations will develop into specific diencephalic regions. To address whether these early subterritories are already committed to restricted identities, we began to analyse the consequences of ablation and transplantation of these specific cell populations. We found that precursors of the prethalamus are already specified and irreplaceable at late gastrula stage, because ablation of these cells results in loss of prethalamic markers. Moreover, when transplanted into the ectopic environment of the presumptive hindbrain, these cells still pursue their prethalamic differentiation program. Finally, transplantation of these precursors, in the rostral-most neural epithelium, induces changes in cell identity in the surrounding host forebrain. This cell-non-autonomous property led us to propose that these committed prethalamic precursors may play an instructive role in the regionalization of the developing diencephalon.


Asunto(s)
Diencéfalo/embriología , Gástrula , Tálamo/embriología , Animales , Animales Modificados Genéticamente , Linaje de la Célula , Expresión Génica , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica
20.
Development ; 134(5): 845-55, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17251267

RESUMEN

Ventral midline Sonic Hedgehog (Shh) signalling is crucial for growth and patterning of the embryonic forebrain. Here, we report how enhanced Shh midline signalling affects the evolution of telencephalic and diencephalic neuronal patterning in the blind cavefish Astyanax mexicanus, a teleost fish closely related to zebrafish. A comparison between cave- and surface-dwelling forms of Astyanax shows that cavefish display larger Shh expression in all anterior midline domains throughout development. This does not affect global forebrain regional patterning, but has several important consequences on specific regions and neuronal populations. First, we show expanded Nkx2.1a expression and higher levels of cell proliferation in the cavefish basal diencephalon and hypothalamus. Second, we uncover an Nkx2.1b-Lhx6-GABA-positive migratory pathway from the subpallium to the olfactory bulb, which is increased in size in cavefish. Finally, we observe heterochrony and enlarged Lhx7 expression in the cavefish basal forebrain. These specific increases in olfactory and hypothalamic forebrain components are Shh-dependent and therefore place the telencephalic midline organisers in a crucial position to modulate forebrain evolution through developmental events, and to generate diversity in forebrain neuronal patterning.


Asunto(s)
Evolución Biológica , Peces/embriología , Proteínas Hedgehog/metabolismo , Prosencéfalo/embriología , Prosencéfalo/metabolismo , Animales , Tipificación del Cuerpo , Movimiento Celular , Proliferación Celular , Diencéfalo/embriología , Diencéfalo/metabolismo , Peces/metabolismo , Proteínas de Homeodominio/metabolismo , Hipotálamo/embriología , Hipotálamo/metabolismo , Neuronas/metabolismo , Bulbo Olfatorio/embriología , Bulbo Olfatorio/metabolismo , Especificidad de Órganos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA